Feuille 1: Suites

1 Exercices corrigés

Exercice 1 (Contrôle continu, mars 2005.)

Soit f la fonction définie sur [0,1] par $x \mapsto \frac{x^{2'}}{2-x^2}$.

On considére la suite $(u_n)_{n\geq 0}$ définie par $u_0\in [0,1[$ et la relation de récurrence $u_{n+1}=\frac{u_n^2}{2-u_n^2}$.

- 1. Montrer que, pour $x \in [0, 1[, 0 \le f(x) \le x < 1]$.
- 2. En déduire que $0 \le u_n < 1$ puis que (u_n) est décroissante.
- 3. La suite (u_n) a-t-elle une limite et si oui laquelle?

Exercice 2 (Examen final, mai 2005.)

Soit (u_n) la suite définie par $u_0 \in \mathbb{R}$ et $u_{n+1} = \sin u_n$ et g la fonction $g: x \to \sin x - x$.

- 1. Étudier la fonction g sur $[-\pi/2, \pi/2]$.
- 2. Montrer que pour tout $n \ge 1, -1 \le u_n \le 1$.
- 3. On suppose que $0 \le u_1 \le 1$.
 - (a) Montrer que pour tout $n \ge 1$, $0 \le u_n \le 1$.
 - (b) En déduire que pour tout $n \ge 1$, $u_{n+1} \le u_n$.
 - (c) En déduire que (u_n) converge et déterminer sa limite.
- 4. On suppose que $-1 \le u_1 \le 0$. Montrer que (u_n) converge et déterminer sa limite.

Exercice 3 (Examen final, avril 2006.)

Étudier la suite (u_n) définie par $u_0 > 0$ et $u_{n+1} = \frac{u_n}{3 + 2u_n^2}$.

Indication. Montrer que (u_n) est décroissante minorée.

Exercice 4 (Examen final, juin 2006.)

On considère la suite (u_n) définie par $u_0 > 0$ et $u_{n+1} = \frac{u_n}{2 + 4u_n^3}$.

- 1. Montrer que (u_n) est décroissante minorée. Que pouvez-vous en déduire ?
- 2. Montrer par récurrence que, pour tout $n \ge 0$, $0 < u_n \le \frac{u_0}{2^n}$. Que pouvez-vous en déduire ?

2 Travaux dirigés

Exercice 5 Déterminez les limites (si elles existent) des suites dont le terme général est donné par les expressions suivantes :

1.
$$u_n = -n^3 + n^2 - 1$$
, $v_n = n^3 + n^2 + 1$, $s_n = u_n + v_n$, $p_n = u_n v_n$, $q_n = \frac{u_n}{v_n}$.

2.
$$u_n = n^2 - 1$$
, $v_n = n^3 - n^2 + \sin(n)$, $s_n = u_n + v_n$, $p_n = u_n v_n$, $q_n = \frac{u_n}{v_n}$.

3.
$$u_n = \frac{n^3 - 5}{n^3 + 1}$$
, $u_n = \frac{2n + 8}{2n^2 + 5}$, $u_n = \sqrt{n + 1} - \sqrt{n - 1}$, $u_n = \sqrt{2n + 1} - \sqrt{n}$.

4.
$$u_n = \left(1 + \frac{1}{n}\right)^n$$
, $u_n = \left(1 + \sin\frac{1}{n}\right)^n$.

- Exercice 6 1. Le taux de natalité annuel dans la ville de Paris est de 4% alors que le taux de mortalité annuel est de 5%. La population en 2000 est de 2.000.000 habitants, au bout de combien de temps cette ville n'aura-t'elle plus d'habitants? Au bout de combien de temps la population aura-t-elle doublé si le taux de natalité annuel est de 5% alors que le taux de mortalité annuel est de 4%?
 - 2. On suppose de plus que chaque année, 1.000 habitants quittent la ville, reprendre les questions ci-dessus.

Exercice 7 Étudier la suite $u_{n+1} = \ln(3 + u_n)$ avec $u_0 = 0$ et $u_0 = 5$. Indication. Étudier d'abord la fonction $f: x \to \ln(x+3) - x$ et montrer qu'il existe un unique $x_0 \in [0, 5]$ tel que $f(x_0) = 0$ et pour $x < x_0$, f(x) > 0 et pour $x > x_0$, f(x) < 0.

Exercice 8 Étudier la suite $u_{n+1} = u_n + \frac{1-u_n^2}{2u_n}$ avec $u_0 > 0$. Indication. Montrer d'abord que $u_n > 0$ pour tout n puis étudier le signe de la fonction $f: x \to \frac{1-x^2}{2x}$ sur $[0, +\infty)$. En déduire le comportement de la suite u_n selon que $0 < u_0 < 1, u_0 = 1$ ou $u_0 > 1$.

Exercice 9 Une population de punaises se répartie selon un disque avec une densité ρ (en punaise· m^{-1}).

- 1. Soit u_n la population de punaises à la génération $n \in \mathbb{N}$, quel est le rayon du disque occupé par cette population ?
- 2. Les punaises se reproduisent proportionnellement à la circonférence du disque qu'elles occupent. Exprimer u_{n+1} en fonction de u_n . Calculer les 5 premiers termes en prenant $u_0 = 1$. Proposer une expression de u_n et démontrez-la.

Exercice 10 Soit $\mu \in]0,4]$, $\nu = \frac{\mu-1}{\mu}$ et $f: x \to \mu x(1-x)$. Soit $(u_n)_{n\geq 0}$ la suite définie par $u_0 \in [0,1]$ et par la relation de récurrence $u_{n+1} = f(u_n) = \mu u_n(1-u_n)$. Notez que $1-\nu = \frac{1}{\mu}$.

- 1. Montrer que pour tout $n \geq 0$, $u_n \in [0, 1]$.
- 2. On suppose que $0 \le \mu \le 1$. Montrer que la suite (u_n) est décroissante. En déduire qu'elle converge et donner sa limite.

- 3. On suppose que $1 \le \mu \le 2$.
 - (a) Montrer que si $u_0 \leq \nu$, alors (u_n) est croissante. En déduire qu'elle converge et donner sa limite.
 - (b) Montrer que si $u_0 \ge 1 \nu$ alors $u_1 \le \nu$. En déduire qu'elle converge et donner sa limite.
 - (c) Montrer que si $\nu \leq u_0 \leq 1 \nu$, alors (u_n) est décroissante. En déduire qu'elle converge et donner sa limite.

3 Corrections

Correction de l'exercice 1.

- 1. Si $0 \le x \le 1$, $0 \le x^2 \le 1$ donc $2 x^2 \ge 1 \ge x \ge 0$ et $0 \le \frac{x^2}{2 x^2} \le \frac{x^2}{x} = x$.
- 2. Par récurrence : on a $0 \le u_0 < 1$. Supposons que $0 \le u_n < 1$, alors d'aprés la question $1, 0 \le f(u_n) = u_{n+1} < 1$. Alors, toujours d'aprés la question $1, u_{n+1} = f(u_n) \le u_n$ donc (u_n) est décroissante.
- 3. (u_n) est décroissante et minorée donc convergente. Soit ℓ sa limite. Comme $0 \le u_n < 1$ et que u_n décroit, $0 \le \ell < 1$.

On a $u_{n+1} \to \ell$ et comme f est continue sur $[0,1[, f(u_n) \to f(\ell)]$ donc, de $u_{n+1} = f(u_n)$ on déduit $\ell = f(\ell)$. Ainsi $\frac{\ell^2}{2-\ell^2} = \ell$. D'où, soit $\ell = 0$ soit $\ell = 2 - \ell^2$ donc $\ell = 1$ ou $\ell = -2$. Mais on sait que $0 \le \ell < 1$ donc $\ell = 0$, en résumé, $u_n \to 0$.

Correction de l'exercice 2.

1. g est définie continue et dérivable sur $[-\pi/2, \pi/2]$ et $g'(x) = \cos x - 1 \le 0$. De plus $\frac{x \mid -\frac{\pi}{2}}{\sqrt{1 + \frac{\pi}{2}}} = \frac{0}{2}$

- 2. Pour $n \ge 1$, $u_n = \sin u_{n-1} \in [-1, 1]$.
- 3. (a) Montrons par récurrence que pour $n \geq 1$, $0 \leq u_n \leq 1$: pour n = 1, c'est l'hypothèse de la question. Supposons que la propriété soit vraie au rang $n : 0 \leq u_n \leq 1 \leq \frac{\pi}{2}$ alors $0 \leq \sin u_n = u_{n+1} \leq \sin \frac{\pi}{2} = 1$. On a donc montré la propriété au rang n + 1. La propriété est donc vraie pour tout $n \geq 1$.
 - (b) D'après létude de la question 1, si $0 \le x \le 1$ alors $g(x) \le 0$. En appliquant cela à $x = u_n$, pour $n \ge 1$, on obtient

$$u_{n+1} - u_n = \sin u_n - u_n = g(u_n) \le 0$$

La suite (u_n) est donc décroissante.

- (c) Comme (u_n) est décroissante et minorée, elle converge. Soit ℓ sa limite. Comme $0 \le u_n \le 1$, on a $0 \le \ell \le 1$. Par ailleurs, comme sin est continue et comme $u_{n+1} = \sin u_n$, en faisant tendre n vers $+\infty$ on a $\ell = \sin \ell$ ou encore $g(\ell) = 0$. D'après l'étude de g, on en déduit que $\ell = 0$.
- 4. (a) Montrons par récurrence que pour $n \ge 1, -1 \le u_n \le 0$: pour n = 1, c'est l'hypothèse de la question. Supposons que la propriété soit vraie au rang $n:-\frac{\pi}{2}\leq -1\leq u_n\leq 0$ alors $-1 = \sin\left(-\frac{\pi}{2}\right) \le \sin u_n = u_{n+1} \le 0$. On a donc montré la propriété au rang n+1. La propriété est donc vraie pour tout $n \geq 1$.
 - (b) D'après létude de la question 1, si $-1 \le x \le 0$ alors $g(x) \ge 0$. En appliquant cela à $x = u_n$, pour $n \ge 1$, on obtient

$$u_{n+1} - u_n = \sin u_n - u_n = g(u_n) \ge 0$$

La suite (u_n) est donc croissante.

(c) Comme (u_n) est croissante et majorée, elle converge. Soit ℓ sa limite. Comme $-1 \leq \ell$ $u_n \leq 0$, on a $-1 \leq \ell \leq 0$. Par ailleurs, comme sin est continue et comme $u_{n+1} =$ $\sin u_n$, en faisant tendre n vers $+\infty$ on a $\ell = \sin \ell$ ou encore $g(\ell) = 0$. D'après l'étude de g, on en déduit que $\ell = 0$.

Correction de l'exercice 3.

- On a $u_0 > 0$, et si $u_n > 0$ alors $u_{n+1} = \frac{u_n}{3+2u_n^2} > 0$ donc par récurrence, pour tout entier $n \ge 0, u_n > 0.$
- On a $u_{n+1} = \frac{u_n}{3+2u_n^2} \le \frac{u_n}{3} \le u_n$ donc (u_n) est décroissante. Comme elle est minorée, elle converge. Soit ℓ sa limite. On a donc aussi $u_{n+1} \to \ell$, mais $u_{n+1} = \frac{u_n}{3+2u_n^2} \to \frac{\ell}{3+2\ell^2}$ donc $\ell = \frac{\ell}{3+2\ell^2}$. Il n'y a donc qu'une seule possibilité: $\ell = 0$ et ainsi

Correction de l'exercice 4.

- 1. Première méthode :
- On a $u_0 > 0$ et si $u_n > 0$ alors $u_{n+1} = \frac{u_n}{2 + 4u_n^3} > 0$ donc par récurrence, pour tout entier
- On a $u_{n+1} u_n = \frac{u_n}{2 + 4u_n^3} u_n = -\frac{u_n(1 + 4u_n^3)}{2 + 4u_n^3} \le 0$ donc (u_n) est décroissante.
- Comme elle est minorée, elle converge. Soit ℓ sa limite. On a donc aussi $u_{n+1} \to \ell$, allors que $\frac{u_n}{2+4u_n^3} \to \frac{\ell}{2+4\ell^3}$. Comme $u_{n+1} = \frac{u_n}{2+4u_n^3}$, on obtient $\ell = \frac{\ell}{2+4\ell^3}$ et le même calcul que ci-dessus montre qu'alors $\ell(1+4\ell^3)=0$. Comme $\ell\geq 0$, il n'y a donc qu'une seule possibilité: $\ell = 0$ et ainsi $u_n \to 0$.
- 2. Deuxième méthode :

Pour n=0 on a évidemment $0 < u_0 \le u_0/2^0 = u_0$. Supposons la proposition vraie au rang nalors

$$0 \le u_{n+1} = \frac{u_n}{2 + 4u_n^3} \le \frac{u_n}{2} \le \frac{u_0}{2 \cdot 2^n} = \frac{u_0}{2^{n+1}},$$

la proposition est donc vraie pour tout n.

Comme $\frac{u_0}{2^{n+1}} \to 0$, d'après le théorème du gendarme, $u_n \to 0$.